US009424013B2

a» United States Patent (0) Patent No.: US 9,424,013 B2
Dice 45) Date of Patent: Aug. 23,2016
(54) SYSTEM AND METHOD FOR REDUCING 2008/0098374 Al* 4/2008 Adl-tabatabai et al. 717/145
TRANSACTIONAL ABORT RATES USING 2009/0132991 Al* 5/2009 Ganaietal ... 716/18
N pal St
COMPILER OPTIMIZATION TECHNIQUES 2015/0032924 AL* 172015 Saripalli GOGE 330087
(75) Inventor: David Dice, FOXbOI‘O, MA (US) OTHER PUBLICATIONS
(73) Assignee: Oracle America, Inc., Redwood City, Ravi Rajwar, “Speculative Lock Elision:: Enabling Highly Concur-
CA (US) rent Multithreaded Execution”, 2001, pp. 294-305 [online][retrieved
on Apr. 29, 2013]. Retrieved from<http://dl.acm.org/citation.
(*) Notice: Subject to any disclaimer, the term of this fm2id=564036>%
patent is extended or adjusted under 35 Continued
U.S.C. 154(b) by 1996 days. (Continued)
(21) Appl. No.: 12/345,189 Primary Examiner — BEvral E Bodden
- (74) Attorney, Agent, or Firm — Robert C. Kowert;
(22) Filed: Dec. 29, 2008 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(65) Prior Publication Data
57 ABSTRACT
US 2010/0169870 Al Jul. 1, 2010 7
In transactional memory systems, transactional aborts due to
(51) Imt.CL conflicts between concurrent threads may cause system per-
GO6F 9/45 (2006.01) formance degradation. A compiler may attempt to minimize
GO6I 9/46 (2006.01) runtime abort rates by performing code transformations and/
(52) US.CL or other optimizations on a transactional memory program in
CPC GOG6F 8/4441 (2013.01); GOGF 9/467 an attempt to minimize store-commit intervals. The compiler
(2013.01) may employ store deferral, hoisting of long-latency opera-
(58) Field of Classification Search tions from within a transaction body and/or store-commit
None interval, speculative hoisting of long-latency operations, and/
See application file for complete search history. or redundant store squashing optimizations. The compiler
may perform optimizing transformations on source code and/
(56) References Cited or on any intermediate representation thereof (e.g., parse
trees, un-optimized assembly code, etc.). The compiler may
U.S. PATENT DOCUMENTS preemptively avoid naive target code constructions. The com-
5’826’089 A * 10/1998 Ireton """""""""""""" 717/146 pller may perform Statlc .and/or .dyna.‘mlc analySIS Of a Pro-
5020898 A * 7/1999 Bolyn etal. w......c... 211/167 gram in order to determine which, if any, transformations
6,092,156 A * 7/2000 Schibinger et al. 711/145 should be applied and/or may dynamically recompile code

2007/0169030 Al

6,477,641 B2* 11/2002
7,350,034 B2* 3/2008

Davisetal.ccccuenenne. 712/241
Shencocevvvirnn GOG6F 12/0833
711/145

7/2007 Tarditi et al.

sections at runtime, based on execution analysis.

20 Claims, 9 Drawing Sheets

Identify Instructions in a Transaction
200

Y

Analyze Instruction Dependencies

Y

Re-order Instructions To Reduce
Number of Instructions in at Least One
Store-Commit Interval

US 9,424,013 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

David Dice, et al.,, “Applications of the Adaptive Transactional
Memory Test Platform,” 2008, 10 pages.

Dice, et al., “Transactional Locking II,” DISC 2006, 15 pages.
Lepak, et al, “Silent Stores for Free,” 2000 IEEE, 10 pages.

Eddon, et al, “Language Support and Compiler Organizations for
STM and Transactional Boosting,” Springer Berlin/Heidelberg,
2007, pp. 209-224.

Adl-Tabatabai, et al., “Compiler and Runtime Support for Efficient
Software Transactional Memory,” Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2006, pp. 26-37.

Wang, et al, “Code Generation and Optimization for Transactional
Memory Constructs in an Unmanaged Language,” Mar. 11-14, 2007,
Programming Syst. Lab., Intel Corp., Appears in Code Generation
and Optimization, 2007. CGO *07. International Symposium.

* cited by examiner

U.S. Patent

Aug. 23, 2016 Sheet 1 of 9

Input Source Code in Source Language
100

A

Lexical Analysis
105

A

Syntactic Analysis
110

A

Semantic Analysis
120

A

Architecture-Independent Optimization
130

A

Generate Instructions in Target Language
140

A

Architecture-Dependent Optimization
150

FIG. 1

US 9,424,013 B2

U.S. Patent Aug. 23,2016 Sheet 2 of 9 US 9,424,013 B2

Identify Instructions in a Transaction
200

A

Analyze Instruction Dependencies
210

A

Re-order Instructions To Reduce
Number of Instructions in at Least One
Store-Commit Interval
220

FIG. 2

U.S. Patent

Instruction Sequence

300

Aug. 23, 2016

Load G
310

A

Increment G
320

Store G
330

Load A
340

Load B
350

Add A.B
360

A

Store Sum
370

FIG. 3A

Sheet 3 of 9

Instruction Sequence

US 9,424,013 B2

305

Load A
345

Load B
355

Add AB
365

Load G
315

A

Increment G
325

Store G
335

A

Store Sum
375

FIG. 3B

U.S. Patent Aug. 23,2016 Sheet 4 of 9 US 9,424,013 B2

Identify a Long-Latency Operation to be
Executed in a Store-Commit Interval
410

A

Insert Instruction(s) to Perform the Long-
Latency Operation Before the Store-Commit
Interval Starts and to Store the Result
420

A

Modify Subsequent Instruction Sequence to
Rely on the Stored Result Instead of
Performing the Long-Latency Operation
430

FIG. 4

U.S. Patent Aug. 23,2016

Execution Sequence
900

Start
Transaction
502

A=A +sin(B)
206

y

Commit
Transaction
508

FIG. 5A

Sheet 5 of 9 US 9,424,013 B2

Execution Sequence
810

Start
Transaction
512

y

¢ = sin(B)
514

Co

y

Commit
Transaction
520

FIG. 5B

U.S. Patent Aug. 23,2016 Sheet 6 of 9 US 9,424,013 B2

Execution Sequence
600

specB = B;
610

A

¢ = sin(specB)
620

A

Start
Transaction
630

B Still Equal
fo specB?

A=A+c
660
| Y
~ _ Commit
A = A+sin(B) »| Transaction
670 680

FIG. 6

U.S. Patent Aug. 23,2016 Sheet 7 of 9 US 9,424,013 B2

Identify a Store Operation
in a Transaction
710

A

Insert Instruction(s) Executable
to Perform the Store Operation
Only If It Is Not Redundant
720

FIG. 7

U.S. Patent

Execution Sequence

800

Aug. 23, 2016

Start
Transaction
802

Sheet 8 of 9

810

US 9,424,013 B2

Execution Sequence

Start
Transaction
812

Execute
Remainder of
Transaction
806

A equals B?
814

Y

ci.ill

Commit
Transaction
808

y

FIG. 8A

Execute
Remainder of
Transaction
818

Y

Commit
Transaction
820

FIG. 8B

U.S. Patent Aug. 23,2016 Sheet 9 of 9 US 9,424,013 B2
Computer System 900
Memory 910
sopicatonts)| | eppemime
P T 924 Variables
tractior & Data
Instructions St
220 Operating 930
System Cogg)é/er
926 Z£8
Interconnect 940
Persistent
Storage Device(s) PFOCS;SOF(s)

FIG. 9

US 9,424,013 B2

1
SYSTEM AND METHOD FOR REDUCING
TRANSACTIONAL ABORT RATES USING
COMPILER OPTIMIZATION TECHNIQUES

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to transactional memory
computer systems and, more specifically, to a system and
method for reducing abort rates in transactional memory sys-
tems through compiler optimization of computer code.

2. Description of the Related Art

Shared-memory computer systems allow multiple threads
of execution to access and operate on the same memory
locations. In such systems, it is often important that a thread
execute a series of instructions as a single atomic block. Any
other thread that observes memory values resulting from a
partial execution of an atomic block, may behave incorrectly.

Transactional memory is a mechanism that allows a thread
to execute a series of instructions as a transaction, that is,
either completely and atomically or not at all. The instruc-
tions comprising a transaction may be executed and then
either “committed”, allowing the aggregate effect to be seen
by all other threads, or “aborted”, allowing no effect to be
seen. Transactional attempts that commit may be said to have
“succeeded”, while those that abort may be said to have
“failed”. If a transaction aborts, the thread may retry execut-
ing the transaction. Transactional memory may be imple-
mented in hardware, software, or a combination thereof.

There are various reasons why a transactional attempt may
abort. In some cases, a transactional attempt may fail because
it is infeasible to execute the particular instruction sequence
transactionally. For example, a given sequence of instructions
may be too long to execute transactionally because it may
require more transactional resources than are available on the
hardware. In another example, it may be infeasible to execute
a given instruction sequence transactionally because it con-
tains one or more instructions that cannot be executed trans-
actionally, such as one or more I/O instructions.

In some cases, a transactional attempt may abort or be
aborted due to a conflict with another, concurrently execut-
ing, thread. For example, if during the execution of a given
transaction, another thread modifies a memory location read
by the transaction, the transaction may abort. Likewise, if a
transaction modifies a shared memory location that is read by
another thread before the transaction commits, then the trans-
action may abort. If the shared memory location were read by
the other thread as part of a transaction, it is possible that both
transactions would abort. This may be referred to as mutual
abort. Repeated transactional aborts may lead to system per-
formance degradation.

SUMMARY

In transactional memory systems, conflicts between con-
current threads may cause transactional aborts, which may
lead to performance degradation. In various embodiments, a
compiler may perform one or more code transformations
and/or other compiler optimizations on a transactional
memory program in order to reduce the program’s transac-
tional abort rate. According to some embodiments, the com-
piler may perform optimizing transformations on a source
code representation and/or on any intermediate representa-
tion (e.g., a parse tree, un-optimized assembly code, etc.) of
the given program in order to reduce the rate of aborts expe-
rienced by the application at runtime. In some embodiments,
a compiler may preemptively avoid naive output code con-

10

15

20

25

30

35

40

45

50

55

60

65

2

structions and may instead generate code optimized to reduce
transactional aborts directly from a source or intermediate
representation.

In some embodiments, the compiler may attempt to mini-
mize abort rates by attempting to minimize one or more
store-commit intervals in the execution of the program. A
store-commit interval may refer to the runtime interval
between when a thread performs a store operation inside of a
transaction body and when the thread attempts to commit that
transaction. During a store-commit interval, one or more
threads may be at risk of aborting. In some embodiments, a
compiler may attempt to minimize the length or number of
occurrences of one or more store-commit intervals by per-
forming one or more store deferral, hoisting, speculative
hoisting, redundant store squashing, and/or data layout opti-
mizations, as described herein.

Using a store deferral optimization, as described herein, a
compiler may reduce the length of an access-commit interval
(e.g., a store-commit interval) by performing a store opera-
tion as near to the end of a transaction body’s execution as
possible. In some embodiments, a compiler may perform a
store deferral optimization by performing and/or consulting
an analysis of data dependencies in the program.

Using a hoisting optimization, as described herein, a com-
piler may reduce the length of a store-commit interval by
hoisting a long-latency calculation located within a store-
commit interval to a location outside of the store-commit
interval. In some embodiments, a compiler may perform this
optimization by configuring the output program to execute
the long-latency operation prior to the start of the store-
commit interval, to store the result of the long-latency opera-
tion in memory, and to use the stored result inside the store-
commit interval, rather than invoking the long-latency
operation inside the store-commit interval. Using a specula-
tive hoisting optimization, as described herein, a compiler
may hoist a long-latency calculation within a store-commit
interval of a transaction to a location outside of a store-
commit interval by configuring the output program to per-
form the long-latency operation prior to the start of the trans-
action. The output program may be further configured to store
the result of the long-latency operation in memory and to use
the stored result in the transaction body rather than invoking
the long-latency operation only if the parameters on which the
result is dependant are unmodified since the long latency
calculation was performed. In various embodiments, a specu-
lative hoisting optimization may be used to relocate a trans-
actionally infeasible instruction to a location outside of the
transaction.

Using a redundant store squashing optimization, as
described herein, a compiler may reduce the length of, or
eliminate altogether, a store-commit interval by configuring
the output program to perform a store operation only if execu-
tion of the store operation would cause at least one value in
memory to change. That is, the output program may execute
a given store operation only if the operation is attempting to
store a value to a memory location that does not already
contain that value. Thus, a compiler may obviate the execu-
tion of one or more store instructions within a transaction and
the corresponding store-commit intervals.

Using a data layout optimization, as described herein, a
compiler may eliminate a store-commit interval and/or
reduce false-positive aborts. In some embodiments, a data
layout optimization may include moving two variables that
are commonly modified together in a transaction onto the
same abort detection modules (e.g., cache blocks) in order to
reduce abort rates. In some embodiments, a data layout opti-
mization may include isolating frequently modified variables

US 9,424,013 B2

3

by allocating such variables onto abort detection modules
separate from those containing memory locations allocated
for other variables.

In some embodiments, a compiler may be configured to
analyze a source program and/or one or more other represen-
tations of the program in order to determine which, if any,
transformations the compiler should apply. This may be
referred to as static analysis. In other embodiments, a runtime
system with dynamic recompilation capabilities, such as a
Java Virtual Machine™, may apply dynamic (i.e., runtime)
analysis to the execution of a program. Such analysis may be
used to determine whether one or more sections of the pro-
gram should be recompiled using various optimizations, such
as those as described herein, and if so, which optimizations
should be used. For example, in embodiments that employ
dynamic recompilation, a compiler may use adaptive runtime
feedback regarding abort rates and, where possible, abort-
specific information (e.g., the identity of the variables, cache
blocks, or other entities involved) in its analysis. In some
embodiments, each abort-reduction optimization technique
described herein may be associated with one of various com-
piler optimization levels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart illustrating the phases of compiling
source code, according to various embodiments.

FIG. 2 is a flowchart illustrating a method for performing a
store deferral optimization, according to various embodi-
ments.

FIGS. 3A-3B illustrate transformation of an instruction
stream using a store deferral optimization, according to vari-
ous embodiments.

FIG. 4 is a flowchart illustrating a method for performing a
hoisting optimization, according to various embodiments.

FIGS. 5A-5B illustrate transformation of an instruction
stream using a hoisting optimization, according to various
embodiments.

FIG. 6 illustrates an example of an instruction stream fol-
lowing a hoisting optimization, according to various embodi-
ments.

FIG. 7 is a flowchart illustrating a method for performing a
redundant store squashing optimization, according to various
embodiments.

FIGS. 8A-8B illustrate transformation of an instruction
stream using a redundant store squashing optimization,
according to various embodiments.

FIG. 9 is a block diagram illustrating a computer system
configured to implement compiler optimizations for reducing
transactional abort rates, according to various embodiments.

While the invention is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood that the drawings and detailed description
hereto are not intended to limit the invention to the particular
form disclosed, but on the contrary, the invention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the present invention as defined by the
appended claims. Any headings used herein are for organiza-
tional purposes only and are not meant to limit the scope of
the description or the claims. As used herein, the word “may”
is used in a permissive sense (i.e., meaning having the poten-
tial to) rather than the mandatory sense (i.e. meaning must).

20

35

40

45

4

CLIY3S

Similarly, the words “include”, “including”, and “includes”
mean including, but not limited to.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

In a transactional memory system, a transaction may
modify one or more values in shared memory. Any program
instruction whose execution causes a value of a shared
memory location to change may be referred to herein as a
store instruction. Execution of a store instruction may per-
form functions other than the modification of one or more
memory values. For example, a compare-and-swap (CAS)
operation may compare the value contained in a memory
location to a given value and, if the two values are the same,
modify the value of the memory location to a given new value.
Because its execution may modify a value in a shared memory
location, such an instruction may also be considered a store
instruction.

When a thread executes a store instruction as part of a
transaction, the transaction may conflict with one or more
other concurrently executing threads. As a result of this con-
flict, one or more of the threads involved in the conflict may
abort and/or be otherwise delayed. For example, if a second
thread reads or modifies the value in the same memory loca-
tion before the transaction has been committed, then the
transaction may abort. Furthermore, if the second thread per-
formed the read or store as part of a second transaction, then
the second transaction may also abort.

Computer code, such as multi-threaded programs written
for transactional memory systems, are often written by pro-
grammers in a high level language such as Java™ or C and
then compiled, using a compiler program, into an architec-
ture-specific lower level language, such as an assembly lan-
guage, byte-code, or binary language. During compilation,
the compiler may analyze the input code and attempt to pro-
duce efficient output code in the target language by perform-
ing certain transformations of intermediate code representa-
tions and/or preemptively avoiding naive constructs within
the output code. These optimizations should not alter the
input program semantics. According to various embodi-
ments, a compiler may perform one or more optimizations in
an attempt to minimize the abort rate that one or more trans-
actions will experience during program execution.

In some embodiments, a compiler may attempt to mini-
mize runtime abort rates in output code execution by attempt-
ing to minimize the length of one or more store-commit
intervals in the output code execution. A store-commit inter-
val, as used herein, may refer to an interval of time between
when a thread executes a store instruction inside of a trans-
action and when the thread attempts to commit that transac-
tion. The store-commit interval may be “opened” by an
execution of the store instruction inside a transaction and
“closed” once the transaction is committed (or aborted). A
transaction may have any number of store-commit intervals
open concurrently, each corresponding to a unique store
operation. In various embodiments, a program compiler may
attempt to minimize the length and/or occurrence of store-
commit intervals in a compiled program and thereby decrease
the probability of the program experiencing one or more
transactional aborts at runtime.

It should be noted that the length of a store-commit interval
may be a function of a dynamic execution path of a program.
Therefore, the store-commit interval associated with the
execution of a given store instruction may not be the same
length for different execution instances. For example, a store
operation may be followed by a conditional operation that

US 9,424,013 B2

5

controls access to various execution paths with arbitrarily
different runtimes. Thus, each execution instance of a given
transaction may cause different store-commit intervals to be
associated with the same store instruction. Therefore, in vari-
ous embodiments, a compiler may perform optimizations in
an attempt to minimize the length of at least one possible
store-commiit interval of a given store instruction.

FIG. 1 is a flowchart illustrating a method for compiling
source code, according to various embodiments. In this
example, a compiler may accept, as input, a source code
representation of a software program or component in a high
level source language such as Java™ or C, as in 100. As
shown in 105, the compiler may then break the source code
into meaningful units in a lexical analysis, or scanning, phase.
The compiler may then parse the tokens in a syntactic analysis
phase (as in 110) and build one or more syntactic structures
(e.g., a parse tree and/or abstract syntax tree), which may
serve as intermediate code representations. The compiler may
add semantic information to the syntactic structures through
a semantic analysis phase, as in 120.

In some embodiments, the compiler and/or another com-
ponent (e.g., optimizer) may optimize intermediate code rep-
resentations using architecture-independent optimizations,
as in 130. During architecture-independent optimization
phase 130, the compiler may perform transformations aimed
at minimizing the length of and/or reducing the number of
store-commit intervals of various store operations. In various
embodiments, the compiler may perform transformations
that may increase the feasibility of performing architecture-
dependent optimizations, or the effectiveness of such optimi-
zations. In this example, such architecture-dependent optimi-
zations may be performed at a later phase (e.g., 150).

In the example illustrated in FIG. 1, the compiler may
generate architecture-specific instructions for the target
architecture, as in 140. The architecture-specific instructions
may include a series of machine executable instructions
coded as assembly language, microinstructions, byte-code,
binary, or any other machine executable instruction language.
The code may be executable by a physical or virtual machine
implementation of the target architecture, in different
embodiments.

In various embodiments, the compiler may perform any
number of architecture-dependent optimizations on the archi-
tecture-specific instructions during an architecture-depen-
dent optimization phase, such as phase 150. Phase 150 may
include various optimizations that may reduce abort rates
experienced by one or more transactions during execution of
the program. For example, the compiler may attempt to mini-
mize the length of one or more store-commit intervals during
execution of the generated code.

In the example illustrated in FIG. 1, various abort rate
reduction techniques may be included in phase 130 and/or in
phase 150. In other embodiments, techniques for reducing
one or more store-commit intervals may be implemented in
any other phase of compilation, including phases not pictured
in FIG. 1. In other embodiments, phase 130 and/or 150 may
be integrated into other phases and either or both may be
omitted. In various embodiments, additional phases may be
added (e.g., a pre-processing phase). In some embodiments,
the compiler may execute before runtime, while compilers in
other embodiments may execute at runtime (e.g., Just-In-
Time compilation). In various embodiments, one or more
optimization techniques may be associated with one or more
compiler optimization levels. For example, a compiler may
perform a given optimization only if the compiler executes at
optimization level 2 or higher.

10

15

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, in response to various runtime con-
ditions (e.g., frequent aborts of one or more transactions) a
compiler may dynamically re-compile a code section corre-
sponding to a transaction. To reduce the abort rate of the
affected code section(s), such dynamic recompilation may be
performed using various levels of optimization and/or various
combinations of optimizations. In some embodiments, the
runtime system may be configured to determine if a section
should be recompiled and/or which optimizations should be
used. In some embodiments, the decision to dynamically
recompile a section with a given set of optimizations enabled
may be determined using runtime information such as trans-
actional abort rates, transactional abort relationships, the
level of concurrency and/or traffic over a given shared
memory location, and/or any other runtime data.

In various embodiments, the compiler may generate an
instruction sequence and then perform code transformations
on the sequence to achieve an optimized instruction sequence
(e.g., one with shorter store-commit intervals than the origi-
nal sequence). In other embodiments, the compiler may pre-
emptively avoid naive implementations and instead produce
code that is optimized to minimize abort rates directly from
intermediate representations rather than from an un-opti-
mized instruction sequence.

According to various embodiments, a compiler may re-
order, delete, and/or introduce one or more instructions to
achieve a lower abort rate and/or a shorter store-commit inter-
val at runtime. Such transformations may not alter the seman-
tics of the program. For example, a compiler may compile
code so that store instructions inside of transactions are
executed as late as possible. This may be known as store
deferral. By deferring a store operation, a compiler may mini-
mize the length of a store-commit interval associated with
that store operation.

FIG. 2 illustrates a method for performing a store deferral
optimization according to some embodiments. The compiler
may perform the illustrated method as a code transformation
on compiled code. In other embodiments, the compiler may
defer stores by manipulating other intermediate representa-
tions, such as a parse tree. In this example, the compiler
begins by identifying instructions that comprise a transaction,
as in 200. The compiler may then analyze the dependencies
between these instructions, as in 210. During analysis phase
210, the compiler may identify various types of data depen-
dency hazards, such as Read-After-Write (RAW) hazards.
Given these dependencies, the compiler may then rearrange
the instructions comprising the transaction, in order to reduce
the number of instructions in at least one store commit inter-
val, as in 220.

Store deferral optimizations may be further illustrating in
the following example. Consider the following pseudo-code:

1: begin transaction
2: G++;

3: Sum=A+B;

4: commit transaction

In this example, G, Sum, A, and B may be global variables
in shared memory. FIGS. 3A and 3B illustrate a store deferral
optimization associated with compilation of this code. FIGS.
3 A and 3B illustrate two possible instruction sequences (300
and 305) for performing the logic in the body of the above
transaction (lines 2, 3). Instruction sequence 300, which may
be produced by a naive or traditional compiler, begins by
loading the value of G into a register (via instruction 310),
incrementing that value (via instruction 320), and storing the

US 9,424,013 B2

7

result in the shared memory location corresponding to vari-
able G (via instruction 330). Executing this sequence of three
instructions may achieve the purpose of incrementing G as
described in line 2 of the pseudo-code. Since instruction 330
may be a store instruction inside of a transaction, the execu-
tion of 330 may open a store-commit interval. According to
instruction sequence 300, four more instructions, correspond-
ing to line 3 of the pseudo-code, must be executed before the
transaction may commit. These are instructions 340 (load A),
350 (load B), 360 (sum A and B), and 370 (store the summa-
tion into the memory location of Sum). According to instruc-
tion sequence 300, after those instructions have been
executed, then the transaction body has been executed and the
transaction may commit, as in line 4. Therefore, according to
instruction sequence 300, the store-commit interval of
instruction 330 must remain open at least until instructions
340, 350, 360, and 370 are executed.

As illustrated in FIG. 3B, according to various embodi-
ments, the body of the transaction (pseudo-code lines 2, 3)
may instead be implemented using instruction sequence 305.
In some embodiments, a compiler may produce (or accept as
input) instruction sequence 300 and convert it to instruction
sequence 305. In other embodiments, a compiler may pro-
duce instruction sequence 305 directly from source code and/
or intermediate program representations.

In some embodiments, a compiler may recognize that the
calculation of Sum=A+B in line 3 does not depend on the
incrementing of G in line 2. Therefore, the store of G may be
deferred until the end of the transaction body. This technique
may be referred to herein as store deferral. In such embodi-
ments, a compiler may attempt to place store instructions as
near to the end of a transaction as possible. For example, the
compiler may produce instruction sequence 305 rather than
sequence 300. In instruction sequence 305, A and B are
loaded into registers via load instructions 345 and 355 respec-
tively, and the summation is calculated via instruction 365.
The value of G is then loaded into a register (via instruction
315) and is incremented (via instruction 325). Finally, store
instructions 335 and 375 may be executed.

In instruction sequence 300, the store-commit interval,
opened by instruction 330, must remain open at least until
four instructions (340, 350, 360, and 370) are executed. By
contrast, in instruction sequence 305, the store-commit inter-
val opened by the analogous store instruction 335 must
remain open only until one other instruction (375) is
executed. Therefore, though instruction sequence 305 pro-
duces the same programmatic result as instruction sequence
300, sequence 305 may be less likely to abort during an open
store-commit interval than sequence 300.

In some embodiments, stores within a transaction may be
deferred by being deflected to a software-based thread-local
deferred store structure. For example, a software store-buffer
may be maintained through the use of special non-transac-
tional store instructions. Thus, the stores may be deferred
until immediately before the commit of the transaction con-
taining them. In such embodiments, an additional optimiza-
tion may be implemented wherein multiple redundant stores
may be collapsed. For example, it may only be necessary to
perform the final store in a series of stores to the same
memory location. In such embodiments, loads that cannot be
proven by the compiler to not cause conflicts may be loaded
from the deferred store structure to avoid read-after-write
execution hazards. In some embodiments, the compiler may
be configured to determine statically whether a given store
instruction operates on an address that is subsequently read
and, if not, the compiler may defer the store instruction within
the transaction. Such code transformations may lead to

10

20

25

30

35

40

45

50

55

60

65

8

reduced conflict abort rates and/or faster performance for
transactions that experience conflicts.

In various embodiments, the compiler may attempt to
minimize one or more store-commit intervals by performing
optimizations other than simple instruction re-arrangement.
In some embodiments, the compiler may be configured to
move, or hoist, long-latency operations to points outside of a
store-commiit interval. For example, the compiler may move
such operations to a point earlier in a transaction body, or to a
point before a transaction body. Performing a hoisting opti-
mization may in some embodiments include the compiler
inserting logic into the compiled application that may not
have been introduced otherwise.

FIG. 4 illustrates an example of a method by which a
compiler may hoist long-latency operations out of a store-
commit interval. As before, the compiler may in some
embodiments perform the illustrated method as a code trans-
formation on compiled code. In other embodiments, the com-
piler may produce the effect ot hoisting by manipulating other
intermediate representations, such as a parse tree. In the
example illustrated in FIG. 4, the compiler may first identify
a long-latency operation in a store commit interval of a trans-
action body, as in 410. The compiler may then insert instruc-
tions to perform the long-latency operation outside of a store-
commit interval and to store the result in memory, as in 420.
For example, in some embodiments the result may be stored
in a local variable in memory. In this example, as shown in
430, the compiler may modify the subsequent instruction
sequence to rely on the result of the long-latency operation
instead of performing it at its original point.

FIGS. 5A-5B illustrate an example of a hoisting transfor-
mation that may be performed by a compiler, according to
various embodiments. FIG. 5A illustrates the execution
sequence of an example transaction, prior to such transfor-
mation. Execution of 500 begins by starting a transaction, as
in 502. In the transaction body, a given variable, A, is incre-
mented by one, as in 504, and then incremented again by an
amount equal to sin(B), as in 506. Finally, the transaction is
committed as in 508. In this example, A and B may be vari-
ables in shared memory. Step 504 may necessitate a store
operation to be executed and may therefore open a store-
commit interval. The interval may be closed only after the
instructions constituting steps 506 and 508 have been com-
pleted. On some systems, a sin() operation may be relatively
time-consuming. Consequently, a store-commit interval
opened in step 504 may be relatively long.

In various embodiments, a compiler may reduce a store-
commit interval by moving, or hoisting, a long-latency opera-
tion, such as the sin() operation in execution sequence 500,
out of a store-commit interval. In some embodiments, a long-
latency operation may by hoisted to an earlier point in the
transaction or to a point outside of the transaction altogether.
The result of a hoisted operation may be stored in a local
variable, shared memory location, and/or register. Instruc-
tions that invoke the long-latency operation may instead
access the result directly. Thus, a hoisting technique may
require new instructions to be introduced.

The sequence illustrated in FIG. 5B may be executed to
achieve the same result as that illustrated in FIG. 5A, but with
a shorter store-commit interval. In some embodiments, a
compiler may produce execution sequence 510 by applying
the hoisting technique, as described herein, to an execution
sequence such as 500. Using this technique, the long-latency
operation sin(B), in 506, may be hoisted out of the transaction
body, as shown in execution sequence 510. In the example
illustrated in FIG. 5B, a transaction is started (as in 512), and
sin(B) is computed and stored in a new local variable ¢ (as in

US 9,424,013 B2

9

514). In some embodiments, the compiler may introduce the
new variable as part of the compilation.

Although the store to ¢ in step 514 may introduce a new
store-commit interval, the interval may not be prone to caus-
ing an abort of the transaction because c, as a variable with
local scope, cannot be read or modified by a remote thread. In
this example, the compiler may output instructions to store
the result of the sin(B) operation in a local register, thereby
obviating the need for a store instruction to be executed and a
corresponding store-commit interval to be opened between
514 and 520. In other embodiments, ¢ may represent a glo-
bally accessible variable. In such embodiments, the compiler
may still perform the transformation if a determination is
made that such a transformation may be advantageous. In
various embodiments, determinations such as whether to per-
form a hoisting transformation and/or where to store the
result of the hoisted operation may be made statically (i.e.,
before runtime) by the compiler and/or during runtime by a
runtime environment or a similar component.

In the example illustrated in FIG. 5B, following the execu-
tion of the added store instruction, A is incremented by one, as
in 516. In step 518, A is incremented by c, that is, by the result
of the long-latency sin(B) operation, as calculated in 514.
Because step 518 does not include the long-latency sin(B)
calculation itself, the store-commit interval opened at 516 and
closed at 520 may be shorter than that opened by 504 and
closed by 508. Thus, instructions executing sequence 510
may be less likely to abort than instructions executing
sequence 500.

In some embodiments, a compiler may move a long-la-
tency operation, such as the sin() function, out of the trans-
action body altogether. This may be referred to as speculative
hoisting. For example, rather than generating execution
sequence 500, a compiler may produce program instructions
to execute sequence 600, shown in FIG. 6. FIG. 6 illustrates
an execution sequence in which a long-latency operation has
been hoisted out of a transaction body, according to various
embodiments. In FIG. 6, the sin() operation included in step
506 of FIG. SA has been moved outside of the transaction
body, which begins at 630. In this example, the value of B is
recorded in a local variable (specB), as in 610. The sin()
calculation is then performed using the speculative value of B
and stored in a local memory location ¢, as in 620. According
to execution sequence 600, the transaction may then be
started (as in 630) and A incremented (as in 640). If the value
of B is still equal to specB (the affirmative exit from 650), then
¢ holds the proper value of sin(B) and may be used to incre-
ment A (as in 660). Otherwise, execution proceeds along the
negative exit from 650, and sin(B) may be recalculated (as in
670), and the transaction may be committed (as in 680).

According to the optimization illustrated in FIG. 6, sin(B)
may be speculatively executed outside of a transaction in
order to avoid performing the long-latency sin() operation
within a store-commit interval. While such a transformation
is not guaranteed to shorten all store-commit intervals result-
ing from the execution of the transaction, it may shorten
some. For example, executions that proceed along the nega-
tive exit from 650 may yield store-commit intervals that are
not shorter than those of a naive compilation. However, by
hoisting the long-latency operation out of the transaction
body, the store-commit interval of at least one execution path
(the one proceeding through the affirmative exit from 650)
may be shorter than the store-commit interval of execution
sequence 500.

Speculative hoisting may in various embodiments be used
for shortening the runtime of critical sections that use con-
ventional mutual exclusion, of critical sections expressed via

5

10

15

20

25

30

35

40

45

50

55

60

10

locks by converted transactions, and of explicit transactions.
For example, the logic represented by the pseudo-code:

synchronized (lock){
A =sin(A);

may be converted to:
SpecA = A;
SinA = sin(SpecA);
Synchronized (lock) {
if(A == SpecA)
A =sinA;
else
A =sin(A);

In this example, the compiler performs a transformation
similar to that illustrated in FIG. 6, by hoisting a long-latency
sin() operation out of a transaction body. In some embodi-
ments, one or more instructions may be hoisted out of a
transaction if those instructions cannot be executed transac-
tionally. In such embodiments, the transaction may be used
simply to ratify the result. As described herein, hoisting may
be used to shorten critical sections and/or to relocate transac-
tionally infeasible operations.

In some embodiments, a compiler may shorten a store-
commit interval by creating execution paths through a trans-
action that avoid executing the initiating store instruction. For
example, a store operation may be configured to store a value
into a memory location that already holds that value. Such a
store operation may be considered redundant and may open
unnecessary store-commit intervals. In various embodi-
ments, a compiler may squash such a redundant store opera-
tion by placing the corresponding store instruction inside of a
conditional structure such that the store instruction is only
executed if it is not redundant.

FIG. 7 illustrates a method by which a compiler may
squash store instructions, according to various embodiments.
As before, the compiler may perform the illustrated method
as a code transformation on compiled code. In other embodi-
ments, the compiler may produce the effect of squashing store
instructions by manipulating other intermediate representa-
tions, such as a parse tree. In the example illustrated in FIG. 7,
the compiler may identify a store operation in a transaction, as
in 710. The compiler may then insert one or more instructions
into the compiled code that cause the store instruction to be
executed only if it is not redundant, as in 720.

FIGS. 8A-8B illustrate an example of a transformation that
may result in squashing a redundant store at runtime, accord-
ing to various embodiments. FIG. 8A illustrates an execution
sequence 800 for a transaction in a transactional memory
system. In this example, a transaction is started (as in 802), a
store operation is executed wherein the value of variable B is
assigned to variable A (as in 804), the remainder of the trans-
action is executed (as in 806), and the transaction is commit-
ted (as in 808). In this example, the store operation 804 may
open a store-commit interval. However, in some execution
instances, the value of A and B may already be identical
before step 804 is executed. In such executions, the store
operation executed in step 804 would be redundant. In various
embodiments, a compiler may squash such a redundant store
by making the execution of the store instruction (e.g., 804)
conditional on the value of the store target (e.g., A) and the
store source (e.g., B) being different.

In some embodiments, a compiler may output program
instructions corresponding to execution sequence 810, illus-
trated in FIG. 8B, to achieve the same programmatic result
that illustrated in FIG. 8A. In execution sequence 810, a

US 9,424,013 B2

11

transaction is started (as in 812) and a store operation (as in
816) is executed only if it is determined that it is not redundant
(shown as the negative exit from 814). In this example, the
insertion of the determination step at 814 (e.g., which may be
implemented using a compare type instruction) may cause
fewer store-commit intervals, such as that between 804 and
808, to be opened at runtime. For example, during an execu-
tion instance of instruction sequence 810, if the store shown at
816 is determined to be redundant (shown as the affirmative
exit from 814), then the store operation is not executed and no
store-commiit interval is opened. In either case, execution of
the remainder of the transaction may continue (as in 818) and
the transaction may be committed (as in 820). Thus, in execu-
tion instances in which the store operation of 816 would be
redundant, the execution sequence illustrated in FIG. 8B
avoids opening a store-commit interval, effectively shorten-
ing the interval to length zero.

In some embodiments, a compiler may reduce or eliminate
one or more store-commit interval by performing a data lay-
out optimization. A data layout optimization may include
allocating memory for two or more program variables onto
fewer or more abort detection modules (e.g., cache blocks) in
orderto reduce abortrates. For example, if a transaction tends
to modify two given variables, then according to some
embodiments, a compiler may allocate memory for the two
variables such that the allocated memory is in the same cache
block. Thus, the store-commit interval opened by the second
variable store may be effectively subsumed by the store-
commit interval opened by the first variable store. This is
because the second interval may occur entirely within the first
interval in time, and an abort during either interval would be
contingent on the same conflict condition (e.g., another thread
modifying the cache block).

In some embodiments, a compiler may perform a data
layout optimization for decreasing transactional abort rates
by allocating memory for variables that may be frequently
modified (and/or that are frequently modified closely together
in time) such that the variables are stored in abort detection
modules separate from those where other variables and/or
data structures are stored (e.g. those that are read, but infre-
quently written). Thus, a compiler may in some embodiments
reduce the rate of “false-positive” aborts, e.g., those aborts
that could occur when concurrent transactions access differ-
ent variables that are stored within a same cache block, but
that do not actually cause a logical conflict. In various
embodiments, a compiler may detect opportunities for and/or
perform data layout optimizations statically before runtime
and/or dynamically during runtime.

The concept of a store-commit interval, as described
herein, may be generalized to an access-commit interval,
wherein an access may be either a load or a store operation.
For example, a transaction may be vulnerable to abort due to
conflicts between a read operation of the transaction and a
write operation of another transaction, between a write opera-
tion of the transaction and a read operation of another trans-
action, or between a write operation of the transaction and a
write operation of another transaction. The optimizations
described herein may be employed to minimize an access-
commit interval to reduce aborts due to any of these read-
write, write-read, or write-write type conflicts. In general, the
disclosed optimizations attempt to accomplish two goals: one
is to minimize windows of vulnerability, that is, make a trans-
action less likely to be victimized by conflicting operations.
The other is to make transactions more polite, that is, less
likely to victimize other transactions. For example, redundant
store squashing addresses both goals.

10

15

20

25

30

35

40

45

50

55

60

65

12

Store deferral, hoisting, store squashing, and/or data layout
optimizations as described herein may be applied during any
one or more of the compilation phases illustrated in FIG. 1.
For example, during architecture-independent optimization
phase 130, a compiler may ensure that the code produced by
code generation phase 140 defers stores in a non-naive man-
ner (e.g., as illustrated in FIG. 3B). During architecture-
dependent optimization phase 150, the compiler may be con-
figured to determine whether sufficient hardware resources
are available for executing optimized code. For example,
since optimized instruction sequence 305 may require more
registers than instruction sequence 300, the compiler may be
configured to determine whether a sufficient number of reg-
isters exist to execute the optimized sequence. In various
embodiments, the compiler may modify the instruction
sequence in light of the hardware resources available.

FIG. 9 illustrates a computing system configured to imple-
ment the methods described herein, according to various
embodiments. The computer system 900 may be any of vari-
ous types of devices, including, but not limited to, a personal
computer system, desktop computer, laptop or notebook
computer, mainframe computer system, handheld computer,
workstation, network computer, a consumer device, applica-
tion server, storage device, a peripheral device such as a
switch, modem, router, etc, or in general any type of comput-
ing device.

The compiling mechanisms described herein may be pro-
vided as a computer program product, or software, that may
include a computer-readable storage medium having stored
thereon instructions, which may be used to program a com-
puter system (or other electronic devices) to perform a pro-
cess according to various embodiments described herein. A
computer-readable storage medium may include any mecha-
nism for storing information in a form (e.g., software, pro-
cessing application) readable by amachine (e.g., acomputer).
The machine-readable storage medium may include, but is
not limited to, magnetic storage medium (e.g., floppy dis-
kette); optical storage medium (e.g., CD-ROM); magneto-
optical storage medium; read only memory (ROM); random
access memory (RAM); erasable programmable memory
(e.g., EPROM and EEPROM); flash memory; electrical, or
other types of medium suitable for storing program instruc-
tions. In addition, program instructions may be communi-
cated using optical, acoustical or other form of propagated
signal (e.g., carrier waves, infrared signals, digital signals,
etc.)

A computer system 900 may include one or more proces-
sors 970, each may include multiple cores, any of which may
be single or multi-threaded. One or more of processors 970
may be a logical processor (e.g., under symmetric multi-
threading). The computer system 900 may also include one or
more persistent storage devices 950 (e.g., optical storage,
magnetic storage, hard drive, tape drive, solid state memory,
etc) and one or more memories 910 (e.g., one or more of
cache, SRAM, DRAM, RDRAM, EDO RAM, DDR 10
RAM, SDRAM, Rambus RAM, EEPROM, etc.). Various
embodiments may include fewer or additional components
not illustrated in FIG. 9 (e.g., video cards, audio cards, addi-
tional network interfaces, peripheral devices, a network inter-
face such as an ATM interface, an Ethernet interface, a Frame
Relay interface, etc.).

The system components, including the one or more pro-
cessors 970, memories 910, and persistent storage devices
950 may be connected via one or more interconnects 940.
Interconnect 940 may be implemented as any broadcast,
point-to-point, or hybrid communication mechanism such as
a front side bus, Ethernet, InfiniBand™, etc.

US 9,424,013 B2

13

One or more of the system memories 910 may contain
program instructions 920. Program instructions 920 may be
executable to implement one or more applications 922 and
compilers 928 as described herein. Program instructions 920
may also include one or more operating systems 926 and/or
runtime environments 924. Program instructions 920 may be
encoded in platform native binary, any interpreted language
such as Java™ byte-code, or in any other language such as
C/C++, Java™ etc or in any combination thereof.

The application instructions 922 may include application
source code 922 for compilation by a compiler 928 according
to various embodiments described herein. A compiler 928
may perform any of the code transformations and optimiza-
tions (e.g., store deferral, hoisting, squashing) described
herein for minimizing transactional abort rates and/or the
length of one or more store-commit intervals in the execution
of application(s) 922. Runtime environment 924 may provide
runtime support for multithreading, transactional memory,
and/or support for virtual machines such as the Java Virtual
Machine™. Runtime environment 924 may also include sup-
port for dynamic recompilation of source code at runtime as
described herein.

The system memory 910 may further comprise shared
memory locations 930 for storing variables and data struc-
tures. For example, local variables may be used to store the
results of long-latency operations (e.g., variable “c” in FIG.
5B). Global variables such as G, Sum, A, and B in FIG. 2 may
also exist in shared memory locations 930. Compilers 924,
applications 922, and/or any other programs defined by pro-
gram instructions 920, may allocate and/or operate on vari-
ables and data structures contained in shared memory 930.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. For example, in some embodi-
ments, the techniques described herein may be applicable to
reducing access-commit intervals other than store-commit
intervals. In various embodiments, the techniques may also
be applicable to Transactional Lock Elision. It is intended that
the following claims be interpreted to embrace all such varia-
tions and modifications.

What is claimed:

1. A computer-implemented method, comprising:

preparing, by a computer, an executable sequence of

instructions corresponding to a source representation of
code comprising an atomic transaction;

wherein said preparing comprises:

reducing a runtime interval of at least one execution path
of the executable sequence between execution of a
store instruction of the atomic transaction and an
attempt to commit the atomic transaction, wherein the
store instruction is an instruction whose execution
stores a value into a shared memory location.

2. The method of claim 1, wherein said reducing comprises
configuring the executable sequence to:

execute the store instruction only if the memory location

does not already contain the value; and

not execute the store instruction if the memory location

already contains the value.

3. The method of claim 1, wherein said reducing comprises
reducing the number of instructions comprising a dynamic
execution path of the executable sequence between the store
instruction and the attempt to commit the atomic transaction.

4. The method of claim 1, wherein said reducing comprises
reducing a cumulative runtime of instructions comprising a

10

15

20

25

30

35

40

50

55

60

65

14

dynamic execution path of the executable sequence between
the store instruction and the attempt to commit the atomic
transaction.

5. The method of claim 1, further comprising:

performing a static analysis of the source representation;

wherein said reducing is dependent on the static analysis.

6. The method of claim 1, further comprising:

performing dynamic analysis of the executable sequence
of instructions;

wherein said reducing is dependent on the dynamic analy-
sis.

7. The method of claim 1, further comprising:

performing dynamic analysis of the executable sequence
of instructions;

wherein said preparing is performed in response to the
dynamic analysis.

8. The method of claim 1, wherein said preparing further

comprises:

attempting to minimize the number of infeasible transac-
tions included in the executable sequence of instruc-
tions, wherein an infeasible transaction is a transaction
that comprises at least one instruction that cannot be
executed transactionally.

9. A non-transitory computer-readable storage medium
storing program instructions executable by a processor in a
multi-processor system to implement:

preparing an executable sequence of instructions corre-
sponding to a source representation of code comprising
an atomic transaction;

wherein said preparing comprises:
reducing a runtime interval of at least one execution path

of the executable sequence between execution of a
store instruction of the atomic transaction and an
attempt to commit the atomic transaction, wherein the
store instruction is an instruction whose execution
stores a value into a shared memory location.

10. The storage medium of claim 9, wherein said attempt-
ing comprises configuring the executable sequence to:

execute the store instruction only if the memory location
does not already contain the value; and

not execute the store instruction if the memory location
already contains the value.

11. The storage medium of claim 9, wherein said attempt-
ing comprises attempting to minimize the number of instruc-
tions comprising a dynamic execution path of the executable
sequence between the store instruction and the attempt to
commit the atomic transaction.

12. The storage medium of claim 9, wherein said reducing
comprises reducing a cumulative runtime of instructions
comprising a dynamic execution path of the executable
sequence between the store instruction and the attempt to
commit the atomic transaction.

13. The storage medium of claim 9, wherein said reducing
is dependent on one or more of: a static analysis of the source
representation, or a dynamic analysis of the executable
sequence of instructions.

14. The storage medium of claim 9, wherein said preparing
is performed in response to a dynamic analysis of the execut-
able sequence of instructions.

15. A system comprising:

tWO Or MOore Processors;

a memory coupled to the two or more processors and
storing program instructions executable by two or more
processors to implement:
preparing an executable sequence of instructions corre-

sponding to a source representation of code compris-
ing an atomic transaction;

US 9,424,013 B2

15
wherein said preparing comprises:

reducing a runtime interval of at least one execution
path of the executable sequence between execution
of a store instruction of the atomic transaction and
an attempt to commit the atomic transaction,
wherein the store instruction is an instruction
whose execution stores a value into a shared
memory location.

16. The system of claim 15, wherein said reducing com-
prises configuring the executable sequence to:

execute the store instruction only if the memory location

does not already contain the value; and

not execute the store instruction if the memory location

already contains the value.

17. The system of claim 15, wherein said reducing com-
prises reducing the number of instructions comprising a
dynamic execution path of the executable sequence between
the store instruction and the attempt to commit the atomic
transaction.

18. The system of claim 15, wherein said reducing com-
prises reducing a cumulative runtime of instructions compris-
ing a dynamic execution path of the executable sequence
between the store instruction and the attempt to commit the
atomic transaction.

19. The system of claim 15, wherein said reducing is
dependent on one or more of: a static analysis of the source
representation, or a dynamic analysis of the executable
sequence of instructions.

20. The system of claim 15, wherein said preparing is
performed inresponse to a dynamic analysis of the executable
sequence of instructions.

#* #* #* #* #*

10

15

20

25

30

16

